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TECHNICAL SUMMARY 

Title 

Railroad Grade Crossing Micro-Level Safety and Risk Analysis - Phase 2 [Evaluation of Safety Risk 
at Highway Rail Grade Crossings]  

Introduction 

The objective of this project is to define and quantify risk at highway rail grade crossings. Even 
though there are models available in the literature to predict the number of accidents at a crossing 
location this alone is not sufficient to quantify the risk at a location. This study defines the risk at a 
crossing by considering the number and severity of the accidents that occurred at the crossing. The risk 
at a railroad grade crossing should be calculated weighing in the severity of each accident at the 
crossing. 

This project evaluates the effectiveness of the USDOT severity prediction formulas by comparing the 
number of fatal/injury accidents predicted by the formula to what is observed in the field. Furthermore, 
this study explores if any additional information about the crossing could be used to apply corrections 
to the formulas to improve the prediction capability of the severity equations. 

Approach and Methodology 

The project defines risk at a crossing by considering the severity (likelihood of an accident being Fatal, 
Injury or PDO) of each accident that occurred at the crossing and by weighing them based on the 
accident severity.  

The severity of the accidents at each crossing was calculated using the FRA formulas to evaluate the 
risk at a crossing. The authors explored the variables, “Maximum Timetable Train Speed” and 
“Crossing Surface” to apply corrections to these USDOT severity prediction equations. An exhaustive 
search approach was used to determine the required corrections to be applied to each of the newly 
identified variables to improve the predictive power of the severity prediction formulas. 



 

 

 

 

 

 
 

 
 

 

 

 

 

 

 

 

This approach was carried out on the accident dataset (between the years 2011 to 2015) and inventory 
dataset from Illinois. The corrections identified were also validated for generality on data from other 
states (Texas, Iowa, South Carolina and Pennsylvania). 

Findings 

The major findings/results of the study are as follows 

1. Identification of new variables (“Maximum Timetable Train Speed” and “Crossing Surface”) 
which can improve the predictive power of USDOT severity equations.  

2. Identification of corrective factors for each of the newly identified variables to improve the 
prediction power of the USDOT severity equations.  

3. Development of a methodology to evaluate the risk for a group of railroad grade crossings.   
4. A step by step procedure to apply corrections and evaluate the risk for a group of railroad grade 

crossings. 

Conclusions 

The study recognized that the corrections to the USDOT severity prediction equations has the potential 
to improve its severity prediction capacity. New variables and their suggested correction factors that 
improved to the USDOT severity prediction equations were identified in this study. The study also 
developed a step by step methodology to evaluate the risk for a group of railroad grade crossings  

Recommendations 

This study has shown that the USDOT severity equations has the potential to improve its predictive 
powers. Further research into the USDOT severity equations using new datasets (census dataset) may 
further improve the predictive power of the equations and should be explored.  

Other recommendations include using the improved severity prediction formulas (using an excel 
toolkit) to evaluate the risk at highway rail grade crossings. The step by step procedure discussed in 
this study can be translated into an excel calculator for ease of use by a practitioner.  
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Introduction 

This project studies the accidents at Highway Rail grade crossings with the objective to develop a 

methodology to define and quantify risk at the crossings. The grade crossings are analyzed on a 

macroscopic scale to compute a value for the risk at a crossing. Even though there are models 

available in the literature to predict the number of accidents at a crossing location (USDOT accident 

prediction formula (1), Zero Inflated Models (2,3) etc.), the prediction of number of accidents alone is 

not sufficient to quantify the risk at a location. This is because the predicted values given by these 

models do not consider the severity of the accident that occur at a crossing. The computed value of 

risk should be able to relatively rank the crossings considering the severity of the accidents in case of 

occurrence of an accident at the crossing location.  

The risk at a railroad grade crossing should be calculated weighing in the severity of each accident at 

the crossing. Equations to compute the severity prediction value are available in the Highway Rail 

Grade Crossing Handbook (1).  This project evaluates the effectiveness of the severity prediction 

formulas by comparing the number of fatal/injury accidents predicted by the formula to what is 

observed in the field. Furthermore, this study explores if any additional information about the crossing 

could be used to apply corrections to the formulas to improve the prediction capability of the severity 

equations. The determined corrections are validated using a separate dataset. 

This study uses the most recent grade crossing accident and inventory datasets that were downloaded 

from the Federal Railroad Administration’s (FRA) website. This was done to ensure that the most up to 

date data was used in this study. Data from the state of Illinois was used to evaluate the severity 

prediction equations and determine necessary corrections to improve the equations. Data from four 

other states (Iowa, Pennsylvania, Texas and South Carolina) was used to validate the corrections. 

These 4 states were selected because they were spread across the continental United States. The 

researchers also ensured that the filters do not wipe out most of the data points from those states. 

(States like California and Washington were not selected for this reason). 



   

 

 

 

	
 

 

 

  

 

 

 

Improved accident risk predictions at railroad grade crossing will allow for more efficient resource 

allocation for crossing upgrades, enhancing the investment of resources to maximize the risk 

reductions. 

This report is for a NURail study titled: Railroad Grade Crossing Micro-Level Safety and Risk Analysis 

– Phase 2. Phase 1 of the study resulted in a report titled “Micro and Macro Level Safety Analysis at 

Railroad Grade Crossings, NURail, March 2016 (15) by Medina, Shen, and Benekohal. 

Literature Review 

A literature review was conducted to summarize the existing state of knowledge regarding risks of 

accidents at highway rail grade crossings. Studies by various researchers done to develop accident 

prediction and severity models at grade crossing locations are listed in this section. This review of this 

literature also helped in listing out traffic and site related variables that were identified as significant 

contributors to accidents at grade crossings. 

The study by Austin et. al. (4) developed a new negative binomial model to predict the accident 

frequency at grade crossings. The study characterized the variables which proved to be significant in 

affecting highway rail grade crossing accident frequencies into three: traffic characteristics, roadway 

characteristics and crossing characteristics. The traffic characteristics include number of nightly (not 

total) through trains, aadt, number of main track lines, number of traffic lanes and maximum timetable 

train speed. The roadway characteristic which was identified was the crossing surface. The study also 

explored other roadway characteristics like development type, roadway geometry, site obstructions 

and these variables did not have a significant effect on the grade crossing accident frequency.  

The study by Saccomanno et. al (5) presents a risk based approach to identify Highway Rail Grade 

Crossing Blackspots in the Ontario region in Canada.  The study developed a negative binomial 

model to fit the collision data and introduced a weighted consequence score that represent the 

combined collision severity. The weights that were used in the study were obtained from insurance 

claims. The average costs of different collision consequences were to obtain weights for each severity 



 

 

 

 

 

 

 

 

 

 

 

level: Fatality: $2,710,000/fatality, Injuries: $65,590/injury and Average Property Damage: 

$61,950/train collision. The weight for a PDO accident was set as 1 and the weights for the other 

severity levels were scaled based on the accident costs. The authors considered the total risk as the 

product of accident frequency and the expected consequence. 

McCollister et. al (6) used logistic regression in their study to model the probability of injuries and 

fatalities at highway rail grade crossing. The study identified accident history and traffic congestion as 

the most significant variables. Other significant variables identified in this study include number of 

through trains at night, number of switching trains during daytime and maximum speed on a section of 

a track. Another conclusion made in this study was that trucks were 60% less likely to be involved in a 

crossing accident than passenger automobiles. 

Hu et. al (7) recognizes that accident frequency and severity must be simultaneously addressed to 

access the accident risk at a highway rail crossing. The study used a generalized logit model with 

stepwise variable selection to identify explanatory variables that were significant in predicting the 

severity of accidents at railroad grade crossings in Taiwan. The study identified that the number of 

daily trains, highway separation, number of daily trucks, obstacle detection device and approaching 

crossing markings significantly affected the levels of accident severity at a railroad grade crossing.  

The study by Berrado et. al (8) developed a framework for risk management in the railway sector and 

gives an illustration of the framework on Moroccan level crossings. The framework involves several 

activities including hazard identification, risk analysis, treatment and control. The risk analysis at a 

crossing is considered in two components: the estimation of the frequency of the accidents and the 

respective consequence.  

Hao et.al. (9) applied an ordered probit model to identify determinants of driver injury severity at 

highway rail grade crossings for various control measures in the United States. The study found the 

factors: schedule factor, weather condition, visibility, vehicle speed, vehicle type, train speed, driver’s 

biographic information (age and gender), area type, pavement and traffic to be significantly associated 



 

 

 

 

 

 

 

       

                                     

                                     

 

 

 

 

with higher injury levels. The findings of this study are consistent with the findings by previous 

researchers as well. 

Based on these studies discussed above, the risk of a crossing in this report is defined by considering 

both the frequency and the severity of the accidents at a crossing. The following section gives a 

mathematical expression to capture this definition of risk. 

Risk at a Crossing 

Accident risk at a crossing could be evaluated as weighted sum of the severity. This is mathematically 

expressed as 

𝑅𝑖𝑠𝑘 𝑎𝑡 𝑎 𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛  𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝑜𝑓 𝑓𝑎𝑡𝑎𝑙 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑠 ∗  𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑓𝑎𝑡𝑎𝑙  𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑠  

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝑜𝑓 𝑖𝑛𝑗𝑢𝑟𝑦 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑠 ∗ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑗𝑢𝑟𝑦 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑠  

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝑜𝑓 𝑃𝐷𝑂 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑠 ∗ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝐷𝑂 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑠 

Depending on relative severity of a fatal/injury accident with respect to a PDO accident, different 

severity scales could be chosen to evaluate the accident risk at a crossing.  

The relative severity of a fatal/injury accident with respect to a PDO accident could be determined in 

several ways. Different approaches are available in the literature. The National Safety Council (10) 

gives the accident costs based on the severity of accidents and a ratio of these severity costs can be 

the basis of a severity scale (Scale 1 in Table 1).  Geurts et. al.(11) uses a different scale to define 

priority values for black spots on highways (Scale 4 in Table 1).  The Ministry of Transportation and 

Communications in Taiwan considers 1 injury to be equivalent to 0.368 fatalities, while the British 

Office of Rail Regulation equalized one fatality in a railroad crash as 10 serious injuries or 200 minor 

injuries (12). Saccomanno et. al (5) equated one fatalities to 44 injuries to yield a crossing collision score. 

Table 1 below gives 4 different severity scales that an engineer can use to determine the risk at a crossing.  



 

 

   

   

      

    

 

 

	

 

  

 

 

                

  

 

Table 1: Relative weights of accident Severity 

Scale Fatal Injury PDO 

1 367.14 21.42 1 

2 200 10 1 

3 44 5 1 

4 5 3 1 

The scales give an indication of the relative severity that the user assigns to a fatal accident as 

compared to an injury accident or a PDO accident. For example, if an engineer chooses to use the 

monetary costs of each type of severity of accident as given in the National Safety Council report, 

he/she can choose scale one. Similarly, scale 2 values injury twice that of scale 3 at the same time, 

scale 2 values a fatal accident at nearly 5 times that of scale 3. If the engineer has no preference, he 

can choose a "default” value given in scale 4. 

DOT Models for Accident Severity 

The equations for accident severity prediction are given in “Summary of the dot rail-highway crossing 

resource allocation procedure-revised” (13). The probability of fatal accident given an accident, P(FA|A), 

is expressed as in equation (1). 

P FA | A      (1)  
∗ ∗ ∗ ∗  

Where 

KF = 440.9 

MS = (maximum timetable train speed in mph)-0.9981 



 

 

 

 

    

  

 

 

                                                                    

 

 

 

 

 

 

 

 

 

TT = (number of thru trains per day + 1)-0.0872 

TS = (number of switch trains per day + 1)0.0872 

UR = exp(0.3571) for urban crossing and 1 for rural crossing 

The probability of an casualty accident given an accident, P(CA|A), is expressed as in equation (2). 

Note that the difference between the number of causality accidents and the number of fatal accidents 

gives the number of injury accidents. 

P CA | A   
 

(2)
∗ ∗ ∗  

Where 

KC = 4.481 

MS = (maximum timetable train speed in mph)-0.343 

TK = exp (0.1153 *total number of tracks at crossing) 

UR = exp (0.2960) for urban crossing and 1 for rural crossing 

Corrections to DOT Severity Prediction 

This study explored if the use of variables available in the FRA database could improve the widely 

accepted FRA severity prediction outcome. A fatal (casualty) prediction model should be able to 

relatively rank the grade crossings such that the top ranked crossings are the ones with high number 

of fatal (casualty) accidents. The following subsection describes the data used in this study followed 

by the description of the methodology used.  

Data Source and Data Cleaning 



 

 

 

 

 

 

 

 

  

 

  

 

 

 

 

  

 

  

 

A dataset from the state of Illinois was selected to try and see if variables from the FRA database 

could be used to adjust the FRA predicted severity values to identify the top crossing with both fatal 

and casualty accidents. 

This study uses two databases maintained by the FRA (14). They are 

1. Highway—Rail Crossing Inventory Database 

This database gives data regarding the characteristics of the crossings including the traffic and 

train volume, crossing surface characteristics etc.  

2. Highway—Rail Crossing Accident Database 

This database gives information regarding each accident including their severity at the grade 

crossing. 

Inventory data and accident data for 5 years (2011 to 2015) was downloaded from the FRA website. 

Both the databases were combined based on the crossing ID and this database was used in developing 

the severity model. This combined database was cleaned based on the filters mentioned in Table 2. 

Table 2: Filters Applied to Database 

Variable 

Name 

Variable Description Filter Comments 

1 TypeXing Crossing Type Keep only ‘3’ ‘3’ stands 

‘Public’ 

for 

2 PosXing Crossing Position Keep only ‘1’ ‘1’ stands for 

Grade’ 

‘At 

3 Aadt AADT Count Remove missing values 

and 1 



 

 

 

 

 

 

 

  

  

 

  

 

 

  

  

 

 

   

 

  

 

 

 

4 AadtYear AADT Year Remove every year 

less than or equal to 

2000 

5 ReasonID Reason for Update Remove “15” and “16” 15 stands for New  

crossing 

16 stands for 

closed crossing 

6 Xangle Smallest Crossing Angle Remove missing values 

7 HwySpeed Highway Speed Limit Remove ‘NULL’ 

8 SpselIDs Train Detection Remove missing values 

9 HwyPved Is Roadway/Pathway 

Paved? 

Remove missing values 

10 MaxTtSpd Maximum Timetable 

Speed 

Remove ‘NULL’ and 

values = 0 

Filters on the accident data were also applied. This includes, 

1. Select only those accidents along the main line at the crossing (This information is available 

under the “TypTrk” variable under the accident database) 

2. Select only motor vehicle accident and remove any train-pedestrian accidents (This information 

is available under “TypVeh” variable) 

3. Remove all accidents which has missing track class or track class marked as “X” (This 

information is available under “TrkClas” variable) 

Further checks were also made to ensure that none of the variables had any missing values. After 

applying the above filters, the database had 7151 locations and 374 accidents. 

Variables Used for Severity Correction 



 

 

 

 

 

  

  

 

 

The analysis started with evaluating 16 different crossing engineering factors like maximum timetable 

train speed, train volume, aadt, traffic lanes and so on. The driver characteristics are not included in 

this study. Using the current format of the DOT equations and the same variables used by the DOT, 

regression analysis using the new data from the state of Illinois was not able to discover any better 

models. (Please note that this doesn’t mean that there are no better models, but rather the use of new 

data on the same variables couldn’t improve the models).  

At this point, rather than building a new model from scratch, it was decided to adjust the current DOT 

severity prediction model to improve its prediction power. The study identified two variables which had 

the potential to improve the severity prediction models: maximum timetable train speed and crossing 

surface. The following subsection gives a brief description of the two variables considered.  

MaxTtSpd (Maximum Timetable Train Speed) 

This variable gives the maximum timetable train speed at the crossing. The normalizations tried on 

this variable are listed below. The variable was discretized as shown in the Table 3 below. 

Table 3: MaxTtSpd Categories 

MaxTtSpd  Factor for MaxTtSpd Category 

=10  ‐3 

11‐20  ‐2 

21‐30  ‐1 

31‐40  0 

41‐50  1 

51‐60  2 



 

 

 

 

 

 

 

 

 

 

 

 

 

61‐70  3 

>70  4 

XSurfaceIDs (Crossing Surface) 

This variable gives information on the type of surface at the crossing. The crossing surface variable 

was categorized into 5 as shown in Table 4 below. 

Table 4: Crossing Surface Categories 

Crossing Surface Factor for Crossing 

Surface Category 

Unconsolidated -2 

Timber -1 

Asphalt 0 

Concrete 1 

Rubber 2 

Methodology Development 



 

 

                                        

 

                                        

                                                                

 

 

  

 

 

 

 

 

Additive corrections were carried to the FRA severity prediction value using the variables mentioned 

in the previous subsection. The adjusted severity prediction value is calculated as 

𝑃 𝐹𝐴|𝐴   𝑃 𝐹𝐴|𝐴   
 
𝑃 𝐹𝐴|𝐴   

 
𝑃 𝐹𝐴|𝐴  (3) 

𝑃 𝐶𝐴|𝐴   𝑃 𝐶𝐴|𝐴   
 
𝑃 𝐶𝐴|𝐴   

 
𝑃 𝐶𝐴|𝐴  (4)

  

𝑃 𝑃𝐷𝑂|𝐴  1   𝑃′ 𝐶𝐴|𝐴                (5) 

Where 

P’(FA|A) = adjusted fatal accident prediction value given an accident 

P’(CA|A) = adjusted casualty accident prediction value given an accident 

P’(PDO|A) = adjusted PDO accident prediction value given an accident 

K = Factor for Maximum Timetable Train Speed category as given in Table 2 

L = Factor for Crossing Surface category as given in Table 3 

Xf = Factor for Maximum Timetable Train Speed correction for fatal prediction 

Yf = Factor for Crossing Surface correction for fatal prediction 

Xc = Factor for Maximum Timetable Train Speed correction for casualty prediction 

Yc = Factor for Crossing Surface correction for casualty prediction 

The values Xf, Yf, Xc, and Yc were identified using the filtered database from Illinois (described above). 

An exhaustive search approach was used to correct the DOT severity predictions with the objective of 

ranking more severe crossings higher on the list. The range of the factor for the correction for the two 



 

   

 

 

 

 

 

  

 

  

  

  

variables were chosen such that the probability is never negative and the effect of correction factor is 

not nullified or insignificant.  

Ranges of X and Y 

The ranges of Xf and Yf  (factors for fatal accident correction) are selected from 4 to 26 while the 

range of Xc and Yc (factors for casualty accident correction) range from 4 to 42. 

Each variable was tried independently to identify if it could improve the predictions over the DOT 

severity equations. The crossings ranked per the FRA fatal accident prediction value identify 9 fatal 

accident locations among the top 48 locations (There were 48 locations with at least 1 fatal accident in 

the Illinois dataset). None of the top 48 crossings had multiple fatal accidents in the Illinois dataset. 

These values were used as a base to compare the values given by the adjusted severity values. The 

results of the adjustments using MaxTtSpd is given in Table 5. 

Table 5: Correction to Fatal Accident Prediction Values using MaxTtSpd 

Xf Fatal 

locations 

(Base: 9) 

Multiple Accident 

Locations 

(Base: 0) 

Xf Fatal locations 

(Base: 9) 

Multiple Accident 

Locations 

(Base: 0) 

+4 8 0 -4 5 2 

+6 8 0 -6 8 2 

+8 8 0 -8 9 2 

+10 8 0 -10 9 0 

+12 8 0 -12 8 0 

+14 9 0 -14 7 0 



 

 

 

 

 

 

 

 

 

 

 

  

  

  

  

+16 8 0 -16 7 0 

+18 8 0 -18 7 0 

+20 8 0 -20 7 0 

+22 8 3 -22 7 0 

+24 8 4 -24 7 0 

+26 8 3 -26 7 0 

From Table 5, it is seen that none of the correction values could adjust the model to identify more 

number of fatal accident locations than what the FRA severity equation could identify. But, Xf values of 

-6 and -8 could identify two crossings which had multiple accidents while also identifying at least 8 

fatal accident locations. The values for Xf close to -6 and -8 which didn’t significantly deteriorate the 

model were also chosen to see if the inclusion of the second variable could improve the adjusted 

model. Based on this, the search space for Xf was reduced to -6 to -12. 

A similar approach was taken for the Crossing Surface variable (Yf), independent of Xf, to see if it 

could improve the predictions over the FRA severity equations. Table 6 gives the results for 

adjustments using Crossing Surface. 

Table 6: Correction to Fatal Accident Prediction Values using Crossing Surface 

Yf Fatal 

locations 

(Base: 9) 

Multiple Accident 

Location 

(Base: 0) 

Yf Fatal 

locations 

(Base: 9) 

Multiple Accident 

Location 

(Base: 0) 

+4 12 3 -4 8 0 

+6 13 2 -6 9 0 



  

 

 

 

 

  

 

 

 

+8 11 2 -8 7 0 

+10 12 2 -10 6 0 

+12 11 1 -12 6 0 

+14 11 0 -14 6 0 

+16 11 0 -16 6 0 

+18 11 0 -18 6 0 

+20 10 0 -20 7 0 

+22 11 1 -22 7 0 

+24 10 0 -24 7 0 

+26 10 0 -26 8 0 

The surface category improved both the total number of predicted location with accidents as well as 

fatal accident locations with multiple accidents using positive corrections for Yf in the range of 4 to 14. 

A similar methodology is adopted to adjust the casualty accident prediction value. The crossings 

ranked per the DOT casualty accident prediction value identify 94 casualty accident locations among 

the top 166 locations. 13 of these top 166 crossings had multiple accidents in the Illinois dataset. 

These values were used as a base to compare the values given by the adjusted casualty prediction 

values. 

Table 7 gives the results using the adjusted injury severity values. 



  

 

Table 7: Correction to Casualty Accident Prediction Values using MaxTtSpd 

Xc Number of 

Casualty 

Locations 

(base=94) 

Multiple Accident 

Locations (Base 

13) 

Xc Number of 

Casualty 

Locations 

(base=94) 

Multiple Accident 

Locations (Base 13) 

4 93 16 -4 84 7 

6 93 15 -6 82 6 

8 93 15 -8 85 6 

10 93 15 -10 86 6 

12 93 15 -12 90 7 

14 97 13 -14 90 9 

16 96 13 -16 87 9 

18 95 13 -18 86 9 

20 94 13 -20 86 10 

22 94 12 -22 86 10 

24 94 12 -24 86 10 

26 94 12 -26 84 12 

28 93 12 -28 85 9 

30 93 12 -30 85 11 

32 94 12 -32 85 10 

34 93 12 -34 87 9 

36 93 11 -36 86 10 

38 94 12 -38 87 11 



 

 

 

 

 

 

40 94 12 -40 88 10 

42 94 11 -42 87 10 

From Table 7, adjustment of casualty accident prediction value using the variable maximum timetable 

train speed shows significant improvement in the number of injury accident locations identified the 

range of Xi: positive Xi from 14 to 42  

Table 8 gives the results for adjustments using Crossing Surface 

Table 8: Correction to Casualty Accident Prediction Values using Crossing Surface  

Yc 

Number of 

Casualty 

Locations 

(base=94) 

Multiple 

Accident 

Locations 

(Base 13) Yc 

Number 

Casualty 

Locations 

(base=94) 

Multiple 

Accident 

Locations 

(Base 13) 

4 89 24 -4 86 5 

6 88 24 -6 87 7 

8 91 20 -8 86 7 

10 91 20 -10 86 7 

12 91 21 -12 85 8 

14 91 17 -14 87 7 

16 92 17 -16 83 8 

18 93 16 -18 84 7 

20 95 16 -20 85 8 



 

  

 

 

 

 

22 93 15 -22 84 8 

24 92 15 -24 85 9 

26 93 16 -26 85 8 

28 93 14 -28 86 9 

30 94 14 -30 86 10 

32 93 13 -32 87 10 

34 92 13 -34 87 10 

36 91 13 -36 86 10 

38 93 14 -38 86 10 

40 93 14 -40 90 10 

42 94 12 -42 90 10 

From Table 8, it is seen that positive corrections for surface category with factor Yi in range of 18 to 

42 improved the predicted number locations significantly. 

Adjustments to the FRA severity prediction values using both the variables: maximum timetable train 

speed and crossing surface, are tried using the reduced search spaces as identified for each of the 

variables. All possible permutations of Xf or i and Yf or i from the reduced search space were tried. Table 

9 gives the results using adjusted fatal accident prediction values using both the variables and how 

they compare to the unadjusted values. 



  

 

 

 

 

 

 

Table 9: Correction to Fatal Accident Prediction Values using both variables 

Correction for maximum 

timetable train speed 

factor (Xf) 

Correction for 

crossing surface 

factor (Yf) 

Fatal 

Locations 

(Base: 9) 

Multiple Accident 

Location (Base: 0) 

-6 4 11 3 

-6 6 10 4 

-6 8 10 5 

-6 10 9 4 

-6 12 9 4 

-6 14 7 3 

-8 4 13 3 

-8 6 13 3 

-8 8 13 4 

-8 10 12 4 

-8 12 12 5 

-8 14 9 3 

-10 4 13 3 

-10 6 13 4 

-10 8 12 4 

-10 10 11 3 

-10 12 11 3 

-10 14 10 2 



 

 

 

  

 

  

-12 4 13 3 

-12 6 14 4 

-12 8 12 4 

-12 10 10 2 

-12 12 10 1 

-12 14 10 1 

From the 24 combinations, the factors capable to improve total predicted locations, multiple accident 

locations and maintain consistency are selected. Three values are selected for Xf : -8, -10, -12 and 

one value for Yf was selected: +6. These are highlighted in Table 9. 

Similar adjustments were tried on the FRA injury accident prediction value using both the variables. 

Table 10 gives the results using adjusted injury accident prediction values using both the variables 

and how they compare to the unadjusted values. 

Table 10: Correction to Casualty Accident Prediction Values using both variables 

Xc Yc 

Number of 

Casualty 

Locations 

(Base 94) 

Multiple 

Accident 

Locations 

(Base 13) 

14 18 89 17 

14 20 89 17 

14 22 90 17 

14 24 91 16 



14 26 91 17 

14 28 91 16 

14 30 91 16 

14 32 93 16 

14 34 92 16 

14 36 91 15 

14 38 91 15 

14 40 92 16 

14 42 92 17 

16 18 90 18 

16 20 90 18 

16 22 93 16 

16 24 94 16 

16 26 93 16 

16 28 93 16 

16 30 93 15 

16 32 93 15 

16 34 93 15 

16 36 93 13 

16 38 93 14 

16 40 93 13 



16 42 94 15 

18 18 92 17 

18 20 93 16 

18 22 93 16 

18 24 93 16 

18 26 93 16 

18 28 93 16 

18 30 93 16 

18 32 93 15 

18 34 93 15 

18 36 94 16 

18 38 94 14 

18 40 94 14 

18 42 94 14 

20 18 91 17 

20 20 93 16 

20 22 93 16 

20 24 93 16 

20 26 93 16 

20 28 93 16 

20 30 93 16 



20 32 93 16 

20 34 94 16 

20 36 94 15 

20 38 94 14 

20 40 94 13 

20 42 94 13 

22 18 91 17 

22 20 93 16 

22 22 93 16 

22 24 93 16 

22 26 93 16 

22 28 93 16 

22 30 93 16 

22 32 93 16 

22 34 94 16 

22 36 96 15 

22 38 95 14 

22 40 95 14 

22 42 95 14 

24 18 92 17 

24 20 93 16 



24 22 93 16 

24 24 93 16 

24 26 93 16 

24 28 94 15 

24 30 95 15 

24 32 94 14 

24 34 94 14 

24 36 95 15 

24 38 94 14 

24 40 95 14 

24 42 95 14 

26 18 91 17 

26 20 93 16 

26 22 94 16 

26 24 94 16 

26 26 94 16 

26 28 94 15 

26 30 94 15 

26 32 94 14 

26 34 95 14 

26 36 95 14 



26 38 95 14 

26 40 95 14 

26 42 95 14 

28 18 93 16 

28 20 92 17 

28 22 93 16 

28 24 94 16 

28 26 95 15 

28 28 94 15 

28 30 96 14 

28 32 96 14 

28 34 96 14 

28 36 96 14 

28 38 96 14 

28 40 95 14 

28 42 96 14 

30 18 92 17 

30 20 94 16 

30 22 94 16 

30 24 95 15 

30 26 94 15 



30 28 96 14 

30 30 96 14 

30 32 96 14 

30 34 96 14 

30 36 96 14 

30 38 96 14 

30 40 95 14 

30 42 95 14 

32 18 92 17 

32 20 93 17 

32 22 94 16 

32 24 94 15 

32 26 95 16 

32 28 95 15 

32 30 96 14 

32 32 96 14 

32 34 96 14 

32 36 96 14 

32 38 96 14 

32 40 95 14 

32 42 95 14 



34 18 93 17 

34 20 93 17 

34 22 94 15 

34 24 95 16 

34 26 95 15 

34 28 95 14 

34 30 96 14 

34 32 96 14 

34 34 96 14 

34 36 96 14 

34 38 96 14 

34 40 96 14 

34 42 96 14 

36 18 93 17 

36 20 93 17 

36 22 94 15 

36 24 95 16 

36 26 95 15 

36 28 96 15 

36 30 95 15 

36 32 96 14 



36 34 96 14 

36 36 96 14 

36 38 95 14 

36 40 96 14 

36 42 95 14 

38 18 93 17 

38 20 93 17 

38 22 94 16 

38 24 95 16 

38 26 95 15 

38 28 95 15 

38 30 96 15 

38 32 96 14 

38 34 96 14 

38 36 96 14 

38 38 95 14 

38 40 96 14 

38 42 95 14 

40 18 93 17 

40 20 94 17 

40 22 95 16 



40 24 95 16 

40 26 95 15 

40 28 95 14 

40 30 96 15 

40 32 95 15 

40 34 96 14 

40 36 96 14 

40 38 96 14 

40 40 95 14 

40 42 95 14 

42 18 93 17 

42 20 94 16 

42 22 94 16 

42 24 95 16 

42 26 95 16 

42 28 96 15 

42 30 96 15 

42 32 95 15 

42 34 96 14 

42 36 96 14 

42 38 96 14 



 

 

 

 

  

 

                                                                 

 

 

  

   

42 40 96 14 

42 42 95 14 

Table 10 shows that adjustments using both the variables can improve the total number of injury 

locations and the number of multiple accident locations identified. From Table 10 different 

combinations of Xc and Yc are selected. Three different Xc values (30, 32, 34) and five different Yc 

values (34, 36, 38, 40, 42) were selected. This results 15 different combinations. 

The adjusted value for casualty accident prediction value is used to calculate the adjusted PDO 

accident prediction value. This value is calculated as  

𝑃 𝑃𝐷𝑂|𝐴   1  𝑃′ 𝐶𝐴|𝐴              (6) 

Using the 15 casualty correction values identified, the PDO prediction values are calculated. These 

values are evaluated against the unadjusted PDO accident prediction value.  This is done to ensure 

that the corrections do not deteriorate the number of PDO locations identified. Now as the correction 

factors are obtained, they are used to evaluate the impact of corrections on PDO prediction (1- 

P’(CA|A)) for all the selected factors of Xc and Yc for casualty in the above step. The PDO accidents 

location predicted are obtained and tabulated in Table 11. 

Table 11: Correction to PDO Accident Prediction using both variables 

Number of 

PDO 

Xc Yc 

Locations 

(base 102) 

30 34 104 



 

 

 

  

  

30 36 104 

30 38 104 

30 40 104 

30 42 104 

32 34 104 

32 36 104 

32 38 104 

32 40 104 

32 42 104 

36 34 104 

36 36 104 

36 38 104 

36 40 104 

36 42 104 

From Table 11, the fifteen sets of casualty corrections identified previously showed improvement in 

identifying PDO locations. 

The researchers added additional filtering on the data set before validating the correction factors 

identified above. These additional filters are mentioned below. 

1. Remove all crossings where total train (sum of Daylight Thru Trains, Night Time Thru Trains 

and Total Switching Trains) is 0. 

2. Remove crossings with surface type marked as “Metal”, “Composite” or “Others” (This 

information is available under the variable “XSurfaceIDs”) 



 

 

 

 

  

 

 

 

 

 

 

 

 

 

The researchers also chose to use the accident data for the years 2012-2016 for validation of the 

identified corrections. Also, crossings with missing values for the variables, including Highway Speed 

and Maximum Timetable Train Speed were removed.  

After the addition of these filters, the database was reduced as follows. 

Table 12: Crossings and Severity of Accidents in Data for Validation 

State 
Number of 

Xings 

Number of 
Xings with 

Acc 

Number of 
Accidents 

Fatal Injury PDO 

Illinois 6424 332 375 47 131 197 

Pennsylvania 2380 136 154 11 47 96 

South 
Carolina 

2062 152 176 9 61 106 

Texas 5500 385 490 40 148 302 

Iowa 2992 135 145 17 41 87 

Validation of Corrections 

Using the database described above, the validation of the corrections identified were carried out.  

Table 13 below shows the validation results. For the validation of the casualty corrections, the number 

of casualty locations were used (and not the injury locations as used in the methodology 

development). This is to ensure that the casualty corrections identified improves the casualty locations 

and not just the injury locations. 



 

 

 

 

 

  

 

  

 

Table 13: Number of Fatal/Casualty Accidents Identified after applying corrections 

Fatal Corrections 

Fatal 

Locations 

Predicted 

Illinois 

Xf  Yf Base:8 

-12 6 10 

-10 6 10 

-8 6 10 

Pennsylvania 

Xf  Yf Base:4 

-12 6 3 

-10 6 3 

-8 6 2 

South Carolina 

Xf  Yf Base:1 

-12 6 1 

-10 6 1 

-8 6 1 

Texas 

Xf  Yf Base:4 

-12 6 5 



  

 

 

  

 

 

  

 

  

    

-10 6 5 

-8 6 4 

Iowa 

Xf  Yf Base:6 

-12 6 4 

-10 6 3 

-8 6 3 

Table 13 shows the number of fatal locations predicted on the new dataset. It can be seen from the 

table that the recommendations made in this report also has the potential to improve the number of 

fatal/casualty locations in the newly filtered dataset. 

The number of fatal locations identified using the corrected DOT fatal prediction values showed 

improvement in Illinois and in Texas using correction sets 1 and 2. The fatal correction set 3 did not 

show any improvement in any state except Illinois. Correction set 1 and 2 are selected for fatal 

corrections. 

Tables 14 – 18 shows the results of applying the identified casualty corrections in each of the 5 states 

in the validation dataset. 

Table 14: Validation Results using Casualty Correction on Illinois 

Xc Yc 

Number of Casualty Locations 

Identified (Base = 94) 

Number of PDO Locations 

Identified (Base = 103) 

30 30 96 103 

30 32 96 103 

30 34 96 103 

30 36 96 103 

30 38 97 104 



 

 

    

32 30 96 103 

32 32 96 103 

32 34 96 103 

32 36 96 103 

32 38 97 103 

34 30 96 102 

34 32 96 103 

34 34 96 103 

34 36 96 102 

34 38 96 103 

Table 15: Validation Results using Casualty Correction on Pennsylvania 

Xc Yc 

Number of Casualty Locations 

Identified (Base = 27) 

Number of PDO Locations 

Identified (Base = 58) 

30 30 25 57 

30 32 25 57 

30 34 24 57 

30 36 24 57 

30 38 24 57 

32 30 25 57 

32 32 25 57 

32 34 25 57 



 

 

 

    

32 36 25 57 

32 38 25 57 

34 30 25 57 

34 32 25 57 

34 34 25 57 

34 36 25 57 

34 38 25 57 

Table16: Validation Results using Casualty Correction on South Carolina 

Xc Yc 

Number of Casualty Locations 

Identified (Base = 29) 

Number of PDO Locations 

Identified (Base = 69) 

30 30 27 66 

30 32 27 66 

30 34 27 66 

30 36 27 66 

30 38 27 66 

32 30 27 66 

32 32 27 66 

32 34 27 66 

32 36 27 66 

32 38 27 66 



 

 

    

34 30 27 66 

34 32 27 66 

34 34 27 66 

34 36 27 66 

34 38 27 66 

Table 17: Validation Results using Casualty Correction on Texas 

Xc Yc 

Number of Casualty Locations 

Identified (Base = 85) 

Number of PDO Locations 

Identified (Base = 179) 

30 30 85 172 

30 32 85 174 

30 34 84 175 

30 36 85 175 

30 38 85 175 

32 30 84 174 

32 32 85 175 

32 34 85 176 

32 36 83 175 

32 38 83 176 

34 30 85 175 

34 32 86 175 

34 34 86 175 



 

    

 

34 36 86 175 

34 38 84 175 

Table 18: Validation Results using Casualty Correction on Iowa 

Xc Yc 

Number of Casualty Locations 

Identified (Base = 28) 

Number of PDO Locations 

Identified (Base = 57) 

30 30 27 57 

30 32 27 58 

30 34 27 58 

30 36 27 58 

30 38 27 58 

32 30 26 57 

32 32 26 57 

32 34 27 57 

32 36 27 58 

32 38 27 58 

34 30 26 56 

34 32 26 57 

34 34 26 57 

34 36 26 57 

34 38 26 57 



  

 

 

 

 

 

 

 

 

  

  

 

From Tables 14 – 18 we can see that the application of casualty corrections enabled us to identify 

more number of casualty locations in the states of Illinois and Texas. The values of Xc ,Yc pairs 

identified for Illinois are 30,38 and 32,38. The respective values identified for Texas are 34,32 , 34,34 , 

34,36. On further inspection, the number of PDO locations identified in the Illinois dataset used in 

validation (Table 14), is better for the pair 30,38. 

From these results, it is safe to say that the corrections using Maximum Timetable Train Speed and 

the Crossing Surface at a grade crossing location has the potential to improve the number of locations 

identified in the dataset.  A DOT engineer would have to identify adjustments required to make the 

corrections on the dataset that he/she is working on.  

Recommended Correction Values 

Tables 19 shows the recommended values of Xf,Yf and Xc, Yc. For the fatal correction, the authors 

recommend values -12,6 or -10,6.  For casualty corrections, the authors recommend using values 

30,38 or 34,34. These values are chosen from the validation dataset in Illinois and Texas.  

Table19: Recommended Correction Values 

Xf  Yf 

1 
-12 6 

2 
-10 6 
Xc  Yc 

1 30 38 

2 34 34 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An analyst can apply this methodology to identify a correction factor for his/her state or choose a 

correction set that would improve the number of fatalities and/or causalities predicted in the state and 

use the adjusted severity prediction value to evaluate risk at crossings. 

Applying Corrections 

A step by step procedure to apply the corrections identified is discussed in this section.  

1. Find the number of locations within the dataset with fatal accidents. This is called NF 

2. Find number of locations that within the dataset that had an accident. This is called M 

3. Sort the M crossings with accidents in descending order using  

a. P0(FA|A) calculated using equation (3).  

b. P1(FA|A) calculated based on fatal correction set 1.  

c. P2(FA|A) calculated based on fatal correction set 2.  

4. In crossings sorted in step 3, find the number of fatal accident locations in the top NF locations. 

These are called NF0, NF1, and NF2 

5. Choose the correction set that corresponds to the highest number among NF0, NF1, and NF2. 

The probability corresponding to the highest number is called P’(FA|A). This value is used to 

calculate the risk at a crossing in Equation 7. 

6. Find the number of locations within the dataset with casualty accidents. This is called NC 

7. Sort the M crossings with accidents in descending order using  

a. P0(CA|A) calculated using equation (3).  

b. P1(CA|A) calculated based on casualty correction set 1. 

c. P2(CA|A) calculated based on casualty correction set 2. 

8. In crossings sorted in step 7, find the number of fatal accident locations in the top NC locations. 

These are called NC0, NC1, and NC2 

9. Choose the correction set that corresponds to the highest number among NC0, NC1, and NC2. 

The probability corresponding to the highest number is called P’(CA|A). This value is used to 

calculate the risk at a crossing in Equation (7). 

10. Calculate P’(PDO|A) as 1-P’(CA|A). This is also used in Equation (7). 
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The Figure 1 below shows the step by step procedure that a DOT engineer can follow to decide if 

he/she chooses to apply a correction or not.  

Figure 1: Stepwise procedure to select correction factor for fatal prediction 

The engineer can look at the number multiple accident locations identified in the top locations in the 

case of a tie. A similar step can be adopted independently to decide which of the two correction sets 

to use (or to not apply corrections) for casualty corrections and PDO corrections. 

To evaluate the risk at a crossing, a user should select a severity scale (given in Table 1). This 

selection could depend on the user’s preferences and/or local conditions in the region of the crossings 

being considered. The risk at a crossing should be computed as 

𝑅𝑖𝑠𝑘 𝑎𝑡 𝑎 𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔  𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝑜𝑓 𝐹𝑎𝑡𝑎𝑙 𝐴𝑐𝑐𝑖𝑑𝑒𝑛𝑡 ∗ 𝑃 𝐹𝐴|𝐴

 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝑜𝑓 𝐼𝑛𝑗𝑢𝑟𝑦 𝐴𝑐𝑐𝑖𝑑𝑒𝑛𝑡 ∗ 𝑃 𝐶𝐴|𝐴  𝑃 𝐹𝐴|𝐴

  𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝑜𝑓 𝑃𝐷𝑂 𝐴𝑐𝑐𝑖𝑑𝑒𝑛𝑡 ∗ 𝑃′ 𝑃𝐷𝑂|𝐴  (7) 

Conclusions and Recommendations 

This report discusses a methodology to define and quantify risk at a railroad grade crossing. The 

predicted number of accidents alone at a crossing is insufficient to determine the risk at a crossing 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

and hence the severity of accidents at the crossing is also considered in this study. The DOT severity 

equations are used as a starting point in this study and the variables crossing surface and maximum 

timetable train speed at a crossing are used to refine the severity prediction values. 

This study used the most recent data from the state of Illinois to identify corrections for prediction of 

fatal and casualty accidents at a location. An exhaustive search approach come up with the corrective 

values to improve the prediction power of the equations. The identified corrections were tried out in 

other states spread across continental United States to validate the results. 

The comparisons between the adjusted severity prediction values and the unadjusted severity 

prediction values show that the adjustments have the potential to improve the prediction power of the 

DOT severity equations. The adjusted DOT severity prediction equations could identify more 

fatal/casualty accidents among the top crossings than the unadjusted DOT severity prediction 

equations in certain states evaluated. Based on the analysis conducted, recommendations for 

correction values are also made. 

This study also developed a stepwise procedure to evaluate a group of crossings. The procedure is 

designed to help an engineer to decide which of the recommended correction values to use.  

Recommendations and Future Work 

Based on the above discussion, we can see that the corrections to the FRA severity prediction 

equations has the potential to improve its severity prediction capacity. This improved severity 

prediction formulas should be used to evaluate the risk at a crossing using the expression considering 

the relative weights of accident severity discussed in the earlier section “Risk at a Crossing”. An 

engineer can follow the methodology discussed in this report to evaluate the risk at the crossing. 



  

 

 

   

Using a bigger dataset with data from more states could aid in fitting a better prediction model. 

Furthermore, more datasets could be added giving further information about the crossing that could 

affect the model, i.e. census data etc.  

The study identified sets of adjustments for DOT casualty prediction formula. The adjusted severity 

prediction equations could be incorporated into an excel calculator. 
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	Introduction 
	Introduction 
	The objective of this project is to define and quantify risk at highway rail grade crossings. Even though there are models available in the literature to predict the number of accidents at a crossing location this alone is not sufficient to quantify the risk at a location. This study defines the risk at a crossing by considering the number and severity of the accidents that occurred at the crossing. The risk at a railroad grade crossing should be calculated weighing in the severity of each accident at the c
	This project evaluates the effectiveness of the USDOT severity prediction formulas by comparing the number of fatal/injury accidents predicted by the formula to what is observed in the field. Furthermore, this study explores if any additional information about the crossing could be used to apply corrections to the formulas to improve the prediction capability of the severity equations. 

	Approach and Methodology 
	Approach and Methodology 
	The project defines risk at a crossing by considering the severity (likelihood of an accident being Fatal, Injury or PDO) of each accident that occurred at the crossing and by weighing them based on the accident severity.  
	The severity of the accidents at each crossing was calculated using the FRA formulas to evaluate the risk at a crossing. The authors explored the variables, “Maximum Timetable Train Speed” and “Crossing Surface” to apply corrections to these USDOT severity prediction equations. An exhaustive search approach was used to determine the required corrections to be applied to each of the newly identified variables to improve the predictive power of the severity prediction formulas. 
	This approach was carried out on the accident dataset (between the years 2011 to 2015) and inventory dataset from Illinois. The corrections identified were also validated for generality on data from other states (Texas, Iowa, South Carolina and Pennsylvania). 

	Findings 
	Findings 
	The major findings/results of the study are as follows 
	1. 
	1. 
	1. 
	Identification of new variables (“Maximum Timetable Train Speed” and “Crossing Surface”) which can improve the predictive power of USDOT severity equations.  
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	Identification of corrective factors for each of the newly identified variables to improve the prediction power of the USDOT severity equations.  

	3. 
	3. 
	Development of a methodology to evaluate the risk for a group of railroad grade crossings.   

	4. 
	4. 
	A step by step procedure to apply corrections and evaluate the risk for a group of railroad grade crossings. 
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	Conclusions 
	The study recognized that the corrections to the USDOT severity prediction equations has the potential to improve its severity prediction capacity. New variables and their suggested correction factors that improved to the USDOT severity prediction equations were identified in this study. The study also developed a step by step methodology to evaluate the risk for a group of railroad grade crossings  
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	Introduction 
	Introduction 
	This project studies the accidents at Highway Rail grade crossings with the objective to develop a methodology to define and quantify risk at the crossings. The grade crossings are analyzed on a macroscopic scale to compute a value for the risk at a crossing. Even though there are models available in the literature to predict the number of accidents at a crossing location (USDOT accident prediction formula (1), Zero Inflated Models (2,3) etc.), the prediction of number of accidents alone is not sufficient t
	The risk at a railroad grade crossing should be calculated weighing in the severity of each accident at the crossing. Equations to compute the severity prediction value are available in the Highway Rail Grade Crossing Handbook (1).  This project evaluates the effectiveness of the severity prediction formulas by comparing the number of fatal/injury accidents predicted by the formula to what is observed in the field. Furthermore, this study explores if any additional information about the crossing could be us
	This study uses the most recent grade crossing accident and inventory datasets that were downloaded from the Federal Railroad Administration’s (FRA) website. This was done to ensure that the most up to date data was used in this study. Data from the state of Illinois was used to evaluate the severity prediction equations and determine necessary corrections to improve the equations. Data from four other states (Iowa, Pennsylvania, Texas and South Carolina) was used to validate the corrections. These 4 states
	Improved accident risk predictions at railroad grade crossing will allow for more efficient resource allocation for crossing upgrades, enhancing the investment of resources to maximize the risk reductions. 
	This report is for a NURail study titled: Railroad Grade Crossing Micro-Level Safety and Risk Analysis 
	– Phase 2. Phase 1 of the study resulted in a report titled “Micro and Macro Level Safety Analysis at Railroad Grade Crossings, NURail, March 2016 (15) by Medina, Shen, and Benekohal. 

	Literature Review 
	Literature Review 
	A literature review was conducted to summarize the existing state of knowledge regarding risks of accidents at highway rail grade crossings. Studies by various researchers done to develop accident prediction and severity models at grade crossing locations are listed in this section. This review of this literature also helped in listing out traffic and site related variables that were identified as significant contributors to accidents at grade crossings. 
	The study by Austin et. al. (4) developed a new negative binomial model to predict the accident frequency at grade crossings. The study characterized the variables which proved to be significant in affecting highway rail grade crossing accident frequencies into three: traffic characteristics, roadway characteristics and crossing characteristics. The traffic characteristics include number of nightly (not total) through trains, aadt, number of main track lines, number of traffic lanes and maximum timetable tr
	The study by Saccomanno et. al (5) presents a risk based approach to identify Highway Rail Grade Crossing Blackspots in the Ontario region in Canada.  The study developed a negative binomial model to fit the collision data and introduced a weighted consequence score that represent the combined collision severity. The weights that were used in the study were obtained from insurance claims. The average costs of different collision consequences were to obtain weights for each severity 
	The study by Saccomanno et. al (5) presents a risk based approach to identify Highway Rail Grade Crossing Blackspots in the Ontario region in Canada.  The study developed a negative binomial model to fit the collision data and introduced a weighted consequence score that represent the combined collision severity. The weights that were used in the study were obtained from insurance claims. The average costs of different collision consequences were to obtain weights for each severity 
	level: Fatality: $2,710,000/fatality, Injuries: $65,590/injury and Average Property Damage: $61,950/train collision. The weight for a PDO accident was set as 1 and the weights for the other severity levels were scaled based on the accident costs. The authors considered the total risk as the product of accident frequency and the expected consequence. 

	McCollister et. al (6) used logistic regression in their study to model the probability of injuries and fatalities at highway rail grade crossing. The study identified accident history and traffic congestion as the most significant variables. Other significant variables identified in this study include number of through trains at night, number of switching trains during daytime and maximum speed on a section of a track. Another conclusion made in this study was that trucks were 60% less likely to be involve
	Hu et. al (7) recognizes that accident frequency and severity must be simultaneously addressed to access the accident risk at a highway rail crossing. The study used a generalized logit model with stepwise variable selection to identify explanatory variables that were significant in predicting the severity of accidents at railroad grade crossings in Taiwan. The study identified that the number of daily trains, highway separation, number of daily trucks, obstacle detection device and approaching crossing mar
	The study by Berrado et. al (8) developed a framework for risk management in the railway sector and gives an illustration of the framework on Moroccan level crossings. The framework involves several activities including hazard identification, risk analysis, treatment and control. The risk analysis at a crossing is considered in two components: the estimation of the frequency of the accidents and the respective consequence.  
	Hao et.al. (9) applied an ordered probit model to identify determinants of driver injury severity at highway rail grade crossings for various control measures in the United States. The study found the factors: schedule factor, weather condition, visibility, vehicle speed, vehicle type, train speed, driver’s biographic information (age and gender), area type, pavement and traffic to be significantly associated 
	Hao et.al. (9) applied an ordered probit model to identify determinants of driver injury severity at highway rail grade crossings for various control measures in the United States. The study found the factors: schedule factor, weather condition, visibility, vehicle speed, vehicle type, train speed, driver’s biographic information (age and gender), area type, pavement and traffic to be significantly associated 
	with higher injury levels. The findings of this study are consistent with the findings by previous researchers as well. 

	Based on these studies discussed above, the risk of a crossing in this report is defined by considering both the frequency and the severity of the accidents at a crossing. The following section gives a mathematical expression to capture this definition of risk. 

	Risk at a Crossing 
	Risk at a Crossing 
	Accident risk at a crossing could be evaluated as weighted sum of the severity. This is mathematically expressed as 
	𝑅𝑖𝑠𝑘 𝑎𝑡 𝑎 𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛  𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝑜𝑓 𝑓𝑎𝑡𝑎𝑙 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑠∗ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑡𝑎𝑙 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑠 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝑜𝑓 𝑖𝑛𝑗𝑢𝑟𝑦 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑠 ∗ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑗𝑢𝑟𝑦 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑠  𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝑜𝑓 𝑃𝐷𝑂 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑠 ∗ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝐷𝑂 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑠 
	Depending on relative severity of a fatal/injury accident with respect to a PDO accident, different severity scales could be chosen to evaluate the accident risk at a crossing.  
	The relative severity of a fatal/injury accident with respect to a PDO accident could be determined in several ways. Different approaches are available in the literature. The National Safety Council (10) gives the accident costs based on the severity of accidents and a ratio of these severity costs can be the basis of a severity scale (Scale 1 in Table 1).  Geurts et. al.(11) uses a different scale to define priority values for black spots on highways (Scale 4 in Table 1).  The Ministry of Transportation an
	Table 1: Relative weights of accident Severity 
	Scale 
	Scale 
	Scale 
	Fatal 
	Injury 
	PDO 

	1 
	1 
	367.14 
	21.42 
	1 

	2 
	2 
	200 
	10 
	1 

	3 
	3 
	44 
	5 
	1 

	4 
	4 
	5 
	3 
	1 


	The scales give an indication of the relative severity that the user assigns to a fatal accident as compared to an injury accident or a PDO accident. For example, if an engineer chooses to use the monetary costs of each type of severity of accident as given in the National Safety Council report, he/she can choose scale one. Similarly, scale 2 values injury twice that of scale 3 at the same time, scale 2 values a fatal accident at nearly 5 times that of scale 3. If the engineer has no preference, he can choo

	DOT Models for Accident Severity 
	DOT Models for Accident Severity 
	The equations for accident severity prediction are given in “Summary of the dot rail-highway crossing resource allocation procedure-revised” (13). The probability of fatal accident given an accident, P(FA|A), is expressed as in equation (1). 
	P FA | A     (1) 
	StyleSpan

	∗∗∗∗ 
	Where 
	KF = 440.9 
	MS = (maximum timetable train speed in mph)
	-0.9981 

	TT = (number of thru trains per day + 1)TS = (number of switch trains per day + 1)UR = exp(0.3571) for urban crossing and 1 for rural crossing 
	-0.0872 
	0.0872 

	The probability of an casualty accident given an accident, P(CA|A), is expressed as in equation (2). Note that the difference between the number of causality accidents and the number of fatal accidents gives the number of injury accidents. 
	P CA | A  (2)
	 

	∗∗∗ 
	Where KC = 4.481 MS = (maximum timetable train speed in mph)TK = exp (0.1153 *total number of tracks at crossing) UR = exp (0.2960) for urban crossing and 1 for rural crossing 
	-0.343 

	Corrections to DOT Severity Prediction 
	This study explored if the use of variables available in the FRA database could improve the widely accepted FRA severity prediction outcome. A fatal (casualty) prediction model should be able to relatively rank the grade crossings such that the top ranked crossings are the ones with high number of fatal (casualty) accidents. The following subsection describes the data used in this study followed by the description of the methodology used.  
	Data Source and Data Cleaning 
	A dataset from the state of Illinois was selected to try and see if variables from the FRA database could be used to adjust the FRA predicted severity values to identify the top crossing with both fatal and casualty accidents. 
	This study uses two databases maintained by the FRA (14). They are 
	1. 
	1. 
	1. 
	Highway—Rail Crossing Inventory Database This database gives data regarding the characteristics of the crossings including the traffic and train volume, crossing surface characteristics etc.  

	2. 
	2. 
	Highway—Rail Crossing Accident Database This database gives information regarding each accident including their severity at the grade crossing. 


	Inventory data and accident data for 5 years (2011 to 2015) was downloaded from the FRA website. Both the databases were combined based on the crossing ID and this database was used in developing the severity model. This combined database was cleaned based on the filters mentioned in Table 2. 
	Table 2: Filters Applied to Database 
	Table
	TR
	Variable Name 
	Variable Description 
	Filter 
	Comments 

	1 
	1 
	TypeXing 
	Crossing Type 
	Keep only ‘3’ 
	‘3’ stands ‘Public’ 
	for 

	2 
	2 
	PosXing 
	Crossing Position 
	Keep only ‘1’ 
	‘1’ stands for Grade’ 
	‘At 

	3 
	3 
	Aadt 
	AADT Count 
	Remove missing values and 1 


	4 
	4 
	4 
	AadtYear 
	AADT Year 
	Remove every year less than or equal to 2000 

	5 
	5 
	ReasonID 
	Reason for Update 
	Remove “15” and “16” 
	15 stands for New crossing 16 stands for closed crossing 

	6 
	6 
	Xangle 
	Smallest Crossing Angle 
	Remove missing values 

	7 
	7 
	HwySpeed 
	Highway Speed Limit 
	Remove ‘NULL’ 

	8 
	8 
	SpselIDs 
	Train Detection 
	Remove missing values 

	9 
	9 
	HwyPved 
	Is Roadway/Pathway Paved? 
	Remove missing values 

	10 
	10 
	MaxTtSpd 
	Maximum Timetable Speed 
	Remove ‘NULL’ and values = 0 


	Filters on the accident data were also applied. This includes, 
	1. 
	1. 
	1. 
	Select only those accidents along the main line at the crossing (This information is available under the “TypTrk” variable under the accident database) 

	2. 
	2. 
	Select only motor vehicle accident and remove any train-pedestrian accidents (This information is available under “TypVeh” variable) 

	3. 
	3. 
	Remove all accidents which has missing track class or track class marked as “X” (This information is available under “TrkClas” variable) 


	Further checks were also made to ensure that none of the variables had any missing values. After applying the above filters, the database had 7151 locations and 374 accidents. 
	Variables Used for Severity Correction 
	The analysis started with evaluating 16 different crossing engineering factors like maximum timetable train speed, train volume, aadt, traffic lanes and so on. The driver characteristics are not included in this study. Using the current format of the DOT equations and the same variables used by the DOT, regression analysis using the new data from the state of Illinois was not able to discover any better models. (Please note that this doesn’t mean that there are no better models, but rather the use of new da
	At this point, rather than building a new model from scratch, it was decided to adjust the current DOT severity prediction model to improve its prediction power. The study identified two variables which had the potential to improve the severity prediction models: maximum timetable train speed and crossing surface. The following subsection gives a brief description of the two variables considered.  
	MaxTtSpd (Maximum Timetable Train Speed) 
	This variable gives the maximum timetable train speed at the crossing. The normalizations tried on this variable are listed below. The variable was discretized as shown in the Table 3 below. 
	Table 3: MaxTtSpd Categories 
	MaxTtSpd 
	MaxTtSpd 
	MaxTtSpd 
	Factor for MaxTtSpd Category 

	=10 
	=10 
	‐3 

	11‐20 
	11‐20 
	‐2 

	21‐30 
	21‐30 
	‐1 

	31‐40 
	31‐40 
	0 

	41‐50 
	41‐50 
	1 

	51‐60 
	51‐60 
	2 


	61‐70 
	3 
	>70 
	4 
	XSurfaceIDs (Crossing Surface) 
	This variable gives information on the type of surface at the crossing. The crossing surface variable was categorized into 5 as shown in Table 4 below. 
	Table 4: Crossing Surface Categories 
	Crossing Surface 
	Crossing Surface 
	Crossing Surface 
	Factor for Crossing Surface Category 

	Unconsolidated 
	Unconsolidated 
	-2 

	Timber 
	Timber 
	-1 

	Asphalt 
	Asphalt 
	0 

	Concrete 
	Concrete 
	1 

	Rubber 
	Rubber 
	2 



	Methodology Development 
	Methodology Development 
	Additive corrections were carried to the FRA severity prediction value using the variables mentioned in the previous subsection. The adjusted severity prediction value is calculated as 
	𝑃𝐹𝐴|𝐴  𝑃𝐹𝐴|𝐴  𝑃𝐹𝐴|𝐴  𝑃𝐹𝐴|𝐴 (3) 
	StyleSpan
	StyleSpan
	StyleSpan
	 
	StyleSpan
	StyleSpan
	 

	𝑃𝐶𝐴|𝐴  𝑃𝐶𝐴|𝐴  𝑃𝐶𝐴|𝐴  𝑃𝐶𝐴|𝐴 (4)
	StyleSpan
	 
	 

	  
	  

	𝑃𝑃𝐷𝑂|𝐴 1  𝑃′𝐶𝐴|𝐴               (5) 
	StyleSpan

	Where P’(FA|A) = adjusted fatal accident prediction value given an accident P’(CA|A) = adjusted casualty accident prediction value given an accident P’(PDO|A) = adjusted PDO accident prediction value given an accident K = Factor for Maximum Timetable Train Speed category as given in Table 2 L = Factor for Crossing Surface category as given in Table 3 f = Factor for Maximum Timetable Train Speed correction for fatal prediction f = Factor for Crossing Surface correction for fatal prediction c = Factor for Max
	X
	Y
	X
	Y

	f, Yf, Xc, and Yc were identified using the filtered database from Illinois (described above). An exhaustive search approach was used to correct the DOT severity predictions with the objective of ranking more severe crossings higher on the list. The range of the factor for the correction for the two 
	f, Yf, Xc, and Yc were identified using the filtered database from Illinois (described above). An exhaustive search approach was used to correct the DOT severity predictions with the objective of ranking more severe crossings higher on the list. The range of the factor for the correction for the two 
	The values X

	variables were chosen such that the probability is never negative and the effect of correction factor is not nullified or insignificant.  

	Ranges of X and Y 
	f and Yf  (factors for fatal accident correction) are selected from 4 to 26 while the c and Yc (factors for casualty accident correction) range from 4 to 42. 
	The ranges of X
	range of X

	Each variable was tried independently to identify if it could improve the predictions over the DOT severity equations. The crossings ranked per the FRA fatal accident prediction value identify 9 fatal accident locations among the top 48 locations (There were 48 locations with at least 1 fatal accident in the Illinois dataset). None of the top 48 crossings had multiple fatal accidents in the Illinois dataset. These values were used as a base to compare the values given by the adjusted severity values. The re
	Table 5: Correction to Fatal Accident Prediction Values using MaxTtSpd 
	Xf 
	Xf 
	Xf 
	Fatal locations (Base: 9) 
	Multiple Accident Locations (Base: 0) 
	Xf 
	Fatal locations (Base: 9) 
	Multiple Accident Locations (Base: 0) 

	+4 
	+4 
	8 
	0 
	-4 
	5 
	2 

	+6 
	+6 
	8 
	0 
	-6 
	8 
	2 

	+8 
	+8 
	8 
	0 
	-8 
	9 
	2 

	+10 
	+10 
	8 
	0 
	-10 
	9 
	0 

	+12 
	+12 
	8 
	0 
	-12 
	8 
	0 

	+14 
	+14 
	9 
	0 
	-14 
	7 
	0 

	+16 
	+16 
	8 
	0 
	-16 
	7 
	0 

	+18 
	+18 
	8 
	0 
	-18 
	7 
	0 

	+20 
	+20 
	8 
	0 
	-20 
	7 
	0 

	+22 
	+22 
	8 
	3 
	-22 
	7 
	0 

	+24 
	+24 
	8 
	4 
	-24 
	7 
	0 

	+26 
	+26 
	8 
	3 
	-26 
	7 
	0 


	From Table 5, it is seen that none of the correction values could adjust the model to identify more f values of -6 and -8 could identify two crossings which had multiple accidents while also identifying at least 8 f close to -6 and -8 which didn’t significantly deteriorate the model were also chosen to see if the inclusion of the second variable could improve the adjusted f was reduced to -6 to -12. 
	number of fatal accident locations than what the FRA severity equation could identify. But, X
	fatal accident locations. The values for X
	model. Based on this, the search space for X

	f), independent of Xf, to see if it could improve the predictions over the FRA severity equations. Table 6 gives the results for adjustments using Crossing Surface. 
	A similar approach was taken for the Crossing Surface variable (Y

	Table 6: Correction to Fatal Accident Prediction Values using Crossing Surface 
	Yf 
	Yf 
	Yf 
	Fatal locations (Base: 9) 
	Multiple Accident Location (Base: 0) 
	Yf 
	Fatal locations (Base: 9) 
	Multiple Accident Location (Base: 0) 

	+4 
	+4 
	12 
	3 
	-4 
	8 
	0 

	+6 
	+6 
	13 
	2 
	-6 
	9 
	0 

	+8 
	+8 
	11 
	2 
	-8 
	7 
	0 

	+10 
	+10 
	12 
	2 
	-10 
	6 
	0 

	+12 
	+12 
	11 
	1 
	-12 
	6 
	0 

	+14 
	+14 
	11 
	0 
	-14 
	6 
	0 

	+16 
	+16 
	11 
	0 
	-16 
	6 
	0 

	+18 
	+18 
	11 
	0 
	-18 
	6 
	0 

	+20 
	+20 
	10 
	0 
	-20 
	7 
	0 

	+22 
	+22 
	11 
	1 
	-22 
	7 
	0 

	+24 
	+24 
	10 
	0 
	-24 
	7 
	0 

	+26 
	+26 
	10 
	0 
	-26 
	8 
	0 


	The surface category improved both the total number of predicted location with accidents as well as f in the range of 4 to 14. 
	fatal accident locations with multiple accidents using positive corrections for Y

	A similar methodology is adopted to adjust the casualty accident prediction value. The crossings ranked per the DOT casualty accident prediction value identify 94 casualty accident locations among the top 166 locations. 13 of these top 166 crossings had multiple accidents in the Illinois dataset. These values were used as a base to compare the values given by the adjusted casualty prediction values. 
	Table 7 gives the results using the adjusted injury severity values. 
	Table 7: Correction to Casualty Accident Prediction Values using MaxTtSpd 
	Xc 
	Xc 
	Xc 
	Number of Casualty Locations (base=94) 
	Multiple Accident Locations (Base 13) 
	Xc 
	Number of Casualty Locations (base=94) 
	Multiple Accident Locations (Base 13) 

	4 
	4 
	93 
	16 
	-4 
	84 
	7 

	6 
	6 
	93 
	15 
	-6 
	82 
	6 

	8 
	8 
	93 
	15 
	-8 
	85 
	6 

	10 
	10 
	93 
	15 
	-10 
	86 
	6 

	12 
	12 
	93 
	15 
	-12 
	90 
	7 

	14 
	14 
	97 
	13 
	-14 
	90 
	9 

	16 
	16 
	96 
	13 
	-16 
	87 
	9 

	18 
	18 
	95 
	13 
	-18 
	86 
	9 

	20 
	20 
	94 
	13 
	-20 
	86 
	10 

	22 
	22 
	94 
	12 
	-22 
	86 
	10 

	24 
	24 
	94 
	12 
	-24 
	86 
	10 

	26 
	26 
	94 
	12 
	-26 
	84 
	12 

	28 
	28 
	93 
	12 
	-28 
	85 
	9 

	30 
	30 
	93 
	12 
	-30 
	85 
	11 

	32 
	32 
	94 
	12 
	-32 
	85 
	10 

	34 
	34 
	93 
	12 
	-34 
	87 
	9 

	36 
	36 
	93 
	11 
	-36 
	86 
	10 

	38 
	38 
	94 
	12 
	-38 
	87 
	11 

	40 
	40 
	94 
	12 
	-40 
	88 
	10 

	42 
	42 
	94 
	11 
	-42 
	87 
	10 


	From Table 7, adjustment of casualty accident prediction value using the variable maximum timetable train speed shows significant improvement in the number of injury accident locations identified the i from 14 to 42  
	range of Xi: positive X

	Table 8 gives the results for adjustments using Crossing Surface 
	Table 8: Correction to Casualty Accident Prediction Values using Crossing Surface  
	Yc 
	Yc 
	Yc 
	Number of Casualty Locations (base=94) 
	Multiple Accident Locations (Base 13) 
	Yc 
	Number Casualty Locations (base=94) 
	Multiple Accident Locations (Base 13) 

	4 
	4 
	89 
	24 
	-4 
	86 
	5 

	6 
	6 
	88 
	24 
	-6 
	87 
	7 

	8 
	8 
	91 
	20 
	-8 
	86 
	7 

	10 
	10 
	91 
	20 
	-10 
	86 
	7 

	12 
	12 
	91 
	21 
	-12 
	85 
	8 

	14 
	14 
	91 
	17 
	-14 
	87 
	7 

	16 
	16 
	92 
	17 
	-16 
	83 
	8 

	18 
	18 
	93 
	16 
	-18 
	84 
	7 

	20 
	20 
	95 
	16 
	-20 
	85 
	8 

	22 
	22 
	93 
	15 
	-22 
	84 
	8 

	24 
	24 
	92 
	15 
	-24 
	85 
	9 

	26 
	26 
	93 
	16 
	-26 
	85 
	8 

	28 
	28 
	93 
	14 
	-28 
	86 
	9 

	30 
	30 
	94 
	14 
	-30 
	86 
	10 

	32 
	32 
	93 
	13 
	-32 
	87 
	10 

	34 
	34 
	92 
	13 
	-34 
	87 
	10 

	36 
	36 
	91 
	13 
	-36 
	86 
	10 

	38 
	38 
	93 
	14 
	-38 
	86 
	10 

	40 
	40 
	93 
	14 
	-40 
	90 
	10 

	42 
	42 
	94 
	12 
	-42 
	90 
	10 


	i in range of 18 to 42 improved the predicted number locations significantly. 
	From 
	Table 8
	, it is seen that positive corrections for surface category with factor Y

	Adjustments to the FRA severity prediction values using both the variables: maximum timetable train speed and crossing surface, are tried using the reduced search spaces as identified for each of the variables. All possible permutations of Xf or i and Yf or i from the reduced search space were tried. Table 9 gives the results using adjusted fatal accident prediction values using both the variables and how they compare to the unadjusted values. 
	Table 9: Correction to Fatal Accident Prediction Values using both variables 
	Correction for maximum timetable train speed factor (Xf) 
	Correction for maximum timetable train speed factor (Xf) 
	Correction for maximum timetable train speed factor (Xf) 
	Correction for crossing surface factor (Yf) 
	Fatal Locations (Base: 9) 
	Multiple Accident Location (Base: 0) 

	-6 
	-6 
	4 
	11 
	3 

	-6 
	-6 
	6 
	10 
	4 

	-6 
	-6 
	8 
	10 
	5 

	-6 
	-6 
	10 
	9 
	4 

	-6 
	-6 
	12 
	9 
	4 

	-6 
	-6 
	14 
	7 
	3 

	-8 
	-8 
	4 
	13 
	3 

	-8 
	-8 
	6 
	13 
	3 

	-8 
	-8 
	8 
	13 
	4 

	-8 
	-8 
	10 
	12 
	4 

	-8 
	-8 
	12 
	12 
	5 

	-8 
	-8 
	14 
	9 
	3 

	-10 
	-10 
	4 
	13 
	3 

	-10 
	-10 
	6 
	13 
	4 

	-10 
	-10 
	8 
	12 
	4 

	-10 
	-10 
	10 
	11 
	3 

	-10 
	-10 
	12 
	11 
	3 

	-10 
	-10 
	14 
	10 
	2 

	-12 
	-12 
	4 
	13 
	3 

	-12 
	-12 
	6 
	14 
	4 

	-12 
	-12 
	8 
	12 
	4 

	-12 
	-12 
	10 
	10 
	2 

	-12 
	-12 
	12 
	10 
	1 

	-12 
	-12 
	14 
	10 
	1 


	From the 24 combinations, the factors capable to improve total predicted locations, multiple accident f : -8, -10, -12 and one value for Yf was selected: +6. These are highlighted in Table 9. 
	locations and maintain consistency are selected. Three values are selected for X

	Similar adjustments were tried on the FRA injury accident prediction value using both the variables. Table 10 gives the results using adjusted injury accident prediction values using both the variables and how they compare to the unadjusted values. 
	Table 10: Correction to Casualty Accident Prediction Values using both variables 
	Xc 
	Xc 
	Xc 
	Yc 
	Number of Casualty Locations (Base 94) 
	Multiple Accident Locations (Base 13) 

	14 
	14 
	18 
	89 
	17 

	14 
	14 
	20 
	89 
	17 

	14 
	14 
	22 
	90 
	17 

	14 
	14 
	24 
	91 
	16 

	14 
	14 
	26 
	91 
	17 

	14 
	14 
	28 
	91 
	16 

	14 
	14 
	30 
	91 
	16 

	14 
	14 
	32 
	93 
	16 

	14 
	14 
	34 
	92 
	16 

	14 
	14 
	36 
	91 
	15 

	14 
	14 
	38 
	91 
	15 

	14 
	14 
	40 
	92 
	16 

	14 
	14 
	42 
	92 
	17 

	16 
	16 
	18 
	90 
	18 

	16 
	16 
	20 
	90 
	18 

	16 
	16 
	22 
	93 
	16 

	16 
	16 
	24 
	94 
	16 

	16 
	16 
	26 
	93 
	16 

	16 
	16 
	28 
	93 
	16 

	16 
	16 
	30 
	93 
	15 

	16 
	16 
	32 
	93 
	15 

	16 
	16 
	34 
	93 
	15 

	16 
	16 
	36 
	93 
	13 

	16 
	16 
	38 
	93 
	14 

	16 
	16 
	40 
	93 
	13 

	16 
	16 
	42 
	94 
	15 

	18 
	18 
	18 
	92 
	17 

	18 
	18 
	20 
	93 
	16 

	18 
	18 
	22 
	93 
	16 

	18 
	18 
	24 
	93 
	16 

	18 
	18 
	26 
	93 
	16 

	18 
	18 
	28 
	93 
	16 

	18 
	18 
	30 
	93 
	16 

	18 
	18 
	32 
	93 
	15 

	18 
	18 
	34 
	93 
	15 

	18 
	18 
	36 
	94 
	16 

	18 
	18 
	38 
	94 
	14 

	18 
	18 
	40 
	94 
	14 

	18 
	18 
	42 
	94 
	14 

	20 
	20 
	18 
	91 
	17 

	20 
	20 
	20 
	93 
	16 

	20 
	20 
	22 
	93 
	16 

	20 
	20 
	24 
	93 
	16 

	20 
	20 
	26 
	93 
	16 

	20 
	20 
	28 
	93 
	16 

	20 
	20 
	30 
	93 
	16 

	20 
	20 
	32 
	93 
	16 

	20 
	20 
	34 
	94 
	16 

	20 
	20 
	36 
	94 
	15 

	20 
	20 
	38 
	94 
	14 

	20 
	20 
	40 
	94 
	13 

	20 
	20 
	42 
	94 
	13 

	22 
	22 
	18 
	91 
	17 

	22 
	22 
	20 
	93 
	16 

	22 
	22 
	22 
	93 
	16 

	22 
	22 
	24 
	93 
	16 

	22 
	22 
	26 
	93 
	16 

	22 
	22 
	28 
	93 
	16 

	22 
	22 
	30 
	93 
	16 

	22 
	22 
	32 
	93 
	16 

	22 
	22 
	34 
	94 
	16 

	22 
	22 
	36 
	96 
	15 

	22 
	22 
	38 
	95 
	14 

	22 
	22 
	40 
	95 
	14 

	22 
	22 
	42 
	95 
	14 

	24 
	24 
	18 
	92 
	17 

	24 
	24 
	20 
	93 
	16 

	24 
	24 
	22 
	93 
	16 

	24 
	24 
	24 
	93 
	16 

	24 
	24 
	26 
	93 
	16 

	24 
	24 
	28 
	94 
	15 

	24 
	24 
	30 
	95 
	15 

	24 
	24 
	32 
	94 
	14 

	24 
	24 
	34 
	94 
	14 

	24 
	24 
	36 
	95 
	15 

	24 
	24 
	38 
	94 
	14 

	24 
	24 
	40 
	95 
	14 

	24 
	24 
	42 
	95 
	14 

	26 
	26 
	18 
	91 
	17 

	26 
	26 
	20 
	93 
	16 

	26 
	26 
	22 
	94 
	16 

	26 
	26 
	24 
	94 
	16 

	26 
	26 
	26 
	94 
	16 

	26 
	26 
	28 
	94 
	15 

	26 
	26 
	30 
	94 
	15 

	26 
	26 
	32 
	94 
	14 

	26 
	26 
	34 
	95 
	14 

	26 
	26 
	36 
	95 
	14 

	26 
	26 
	38 
	95 
	14 

	26 
	26 
	40 
	95 
	14 

	26 
	26 
	42 
	95 
	14 

	28 
	28 
	18 
	93 
	16 

	28 
	28 
	20 
	92 
	17 

	28 
	28 
	22 
	93 
	16 

	28 
	28 
	24 
	94 
	16 

	28 
	28 
	26 
	95 
	15 

	28 
	28 
	28 
	94 
	15 

	28 
	28 
	30 
	96 
	14 

	28 
	28 
	32 
	96 
	14 

	28 
	28 
	34 
	96 
	14 

	28 
	28 
	36 
	96 
	14 

	28 
	28 
	38 
	96 
	14 

	28 
	28 
	40 
	95 
	14 

	28 
	28 
	42 
	96 
	14 

	30 
	30 
	18 
	92 
	17 

	30 
	30 
	20 
	94 
	16 

	30 
	30 
	22 
	94 
	16 

	30 
	30 
	24 
	95 
	15 

	30 
	30 
	26 
	94 
	15 

	30 
	30 
	28 
	96 
	14 

	30 
	30 
	30 
	96 
	14 

	30 
	30 
	32 
	96 
	14 

	30 
	30 
	34 
	96 
	14 

	30 
	30 
	36 
	96 
	14 

	30 
	30 
	38 
	96 
	14 

	30 
	30 
	40 
	95 
	14 

	30 
	30 
	42 
	95 
	14 

	32 
	32 
	18 
	92 
	17 

	32 
	32 
	20 
	93 
	17 

	32 
	32 
	22 
	94 
	16 

	32 
	32 
	24 
	94 
	15 

	32 
	32 
	26 
	95 
	16 

	32 
	32 
	28 
	95 
	15 

	32 
	32 
	30 
	96 
	14 

	32 
	32 
	32 
	96 
	14 

	32 
	32 
	34 
	96 
	14 

	32 
	32 
	36 
	96 
	14 

	32 
	32 
	38 
	96 
	14 

	32 
	32 
	40 
	95 
	14 

	32 
	32 
	42 
	95 
	14 

	34 
	34 
	18 
	93 
	17 

	34 
	34 
	20 
	93 
	17 

	34 
	34 
	22 
	94 
	15 

	34 
	34 
	24 
	95 
	16 

	34 
	34 
	26 
	95 
	15 

	34 
	34 
	28 
	95 
	14 

	34 
	34 
	30 
	96 
	14 

	34 
	34 
	32 
	96 
	14 

	34 
	34 
	34 
	96 
	14 

	34 
	34 
	36 
	96 
	14 

	34 
	34 
	38 
	96 
	14 

	34 
	34 
	40 
	96 
	14 

	34 
	34 
	42 
	96 
	14 

	36 
	36 
	18 
	93 
	17 

	36 
	36 
	20 
	93 
	17 

	36 
	36 
	22 
	94 
	15 

	36 
	36 
	24 
	95 
	16 

	36 
	36 
	26 
	95 
	15 

	36 
	36 
	28 
	96 
	15 

	36 
	36 
	30 
	95 
	15 

	36 
	36 
	32 
	96 
	14 

	36 
	36 
	34 
	96 
	14 

	36 
	36 
	36 
	96 
	14 

	36 
	36 
	38 
	95 
	14 

	36 
	36 
	40 
	96 
	14 

	36 
	36 
	42 
	95 
	14 

	38 
	38 
	18 
	93 
	17 

	38 
	38 
	20 
	93 
	17 

	38 
	38 
	22 
	94 
	16 

	38 
	38 
	24 
	95 
	16 

	38 
	38 
	26 
	95 
	15 

	38 
	38 
	28 
	95 
	15 

	38 
	38 
	30 
	96 
	15 

	38 
	38 
	32 
	96 
	14 

	38 
	38 
	34 
	96 
	14 

	38 
	38 
	36 
	96 
	14 

	38 
	38 
	38 
	95 
	14 

	38 
	38 
	40 
	96 
	14 

	38 
	38 
	42 
	95 
	14 

	40 
	40 
	18 
	93 
	17 

	40 
	40 
	20 
	94 
	17 

	40 
	40 
	22 
	95 
	16 

	40 
	40 
	24 
	95 
	16 

	40 
	40 
	26 
	95 
	15 

	40 
	40 
	28 
	95 
	14 

	40 
	40 
	30 
	96 
	15 

	40 
	40 
	32 
	95 
	15 

	40 
	40 
	34 
	96 
	14 

	40 
	40 
	36 
	96 
	14 

	40 
	40 
	38 
	96 
	14 

	40 
	40 
	40 
	95 
	14 

	40 
	40 
	42 
	95 
	14 

	42 
	42 
	18 
	93 
	17 

	42 
	42 
	20 
	94 
	16 

	42 
	42 
	22 
	94 
	16 

	42 
	42 
	24 
	95 
	16 

	42 
	42 
	26 
	95 
	16 

	42 
	42 
	28 
	96 
	15 

	42 
	42 
	30 
	96 
	15 

	42 
	42 
	32 
	95 
	15 

	42 
	42 
	34 
	96 
	14 

	42 
	42 
	36 
	96 
	14 

	42 
	42 
	38 
	96 
	14 

	42 
	42 
	40 
	96 
	14 

	42 
	42 
	42 
	95 
	14 


	Table 10 shows that adjustments using both the variables can improve the total number of injury locations and the number of multiple accident locations identified. From Table 10 different c and Yc are selected. Three different Xc values (30, 32, 34) and five different Yc values (34, 36, 38, 40, 42) were selected. This results 15 different combinations. 
	combinations of X

	The adjusted value for casualty accident prediction value is used to calculate the adjusted PDO accident prediction value. This value is calculated as  
	𝑃𝑃𝐷𝑂|𝐴  1  𝑃′𝐶𝐴|𝐴             (6) 
	StyleSpan

	Using the 15 casualty correction values identified, the PDO prediction values are calculated. These values are evaluated against the unadjusted PDO accident prediction value.  This is done to ensure that the corrections do not deteriorate the number of PDO locations identified. Now as the correction factors are obtained, they are used to evaluate the impact of corrections on PDO prediction (1- c and Yc for casualty in the above step. The PDO accidents location predicted are obtained and tabulated in Table 1
	P’(CA|A)) for all the selected factors of X

	Table 11: Correction to PDO Accident Prediction using both variables 
	Table
	TR
	Number of PDO 

	Xc 
	Xc 
	Yc 
	Locations (base 102) 

	30 
	30 
	34 
	104 

	30 
	30 
	36 
	104 

	30 
	30 
	38 
	104 

	30 
	30 
	40 
	104 

	30 
	30 
	42 
	104 

	32 
	32 
	34 
	104 

	32 
	32 
	36 
	104 

	32 
	32 
	38 
	104 

	32 
	32 
	40 
	104 

	32 
	32 
	42 
	104 

	36 
	36 
	34 
	104 

	36 
	36 
	36 
	104 

	36 
	36 
	38 
	104 

	36 
	36 
	40 
	104 

	36 
	36 
	42 
	104 


	From Table 11, the fifteen sets of casualty corrections identified previously showed improvement in identifying PDO locations. 
	The researchers added additional filtering on the data set before validating the correction factors identified above. These additional filters are mentioned below. 
	1. Remove all crossings where total train (sum of Daylight Thru Trains, Night Time Thru Trains and Total Switching Trains) is 0. 
	2. Remove crossings with surface type marked as “Metal”, “Composite” or “Others” (This information is available under the variable “XSurfaceIDs”) 
	The researchers also chose to use the accident data for the years 2012-2016 for validation of the identified corrections. Also, crossings with missing values for the variables, including Highway Speed and Maximum Timetable Train Speed were removed.  
	After the addition of these filters, the database was reduced as follows. 
	Table 12: Crossings and Severity of Accidents in Data for Validation 
	Table 12: Crossings and Severity of Accidents in Data for Validation 
	Table 12: Crossings and Severity of Accidents in Data for Validation 

	State 
	State 
	Number of Xings 
	Number of Xings with Acc 
	Number of Accidents 
	Fatal 
	Injury 
	PDO 

	Illinois 
	Illinois 
	6424 
	332 
	375 
	47 
	131 
	197 

	Pennsylvania 
	Pennsylvania 
	2380 
	136 
	154 
	11 
	47 
	96 

	South Carolina 
	South Carolina 
	2062 
	152 
	176 
	9 
	61 
	106 

	Texas 
	Texas 
	5500 
	385 
	490 
	40 
	148 
	302 

	Iowa 
	Iowa 
	2992 
	135 
	145 
	17 
	41 
	87 


	Validation of Corrections 
	Using the database described above, the validation of the corrections identified were carried out.  Table 13 below shows the validation results. For the validation of the casualty corrections, the number of casualty locations were used (and not the injury locations as used in the methodology development). This is to ensure that the casualty corrections identified improves the casualty locations and not just the injury locations. 
	Table 13: Number of Fatal/Casualty Accidents Identified after applying corrections 
	Fatal Corrections 
	Fatal Corrections 
	Fatal Corrections 
	Fatal Locations Predicted 

	Illinois 
	Illinois 

	Xf
	Xf
	 Yf 
	Base:8 

	-12 
	-12 
	6 
	10 

	-10 
	-10 
	6 
	10 

	-8 
	-8 
	6 
	10 

	Pennsylvania 
	Pennsylvania 

	Xf
	Xf
	 Yf 
	Base:4 

	-12 
	-12 
	6 
	3 

	-10 
	-10 
	6 
	3 

	-8 
	-8 
	6 
	2 

	South Carolina 
	South Carolina 

	Xf
	Xf
	 Yf 
	Base:1 

	-12 
	-12 
	6 
	1 

	-10 
	-10 
	6 
	1 

	-8 
	-8 
	6 
	1 

	Texas 
	Texas 

	Xf
	Xf
	 Yf 
	Base:4 

	-12 
	-12 
	6 
	5 


	-10 
	-10 
	-10 
	6 
	5 

	-8 
	-8 
	6 
	4 

	TR
	Iowa 

	Xf
	Xf
	 Yf 
	Base:6 

	-12 
	-12 
	6 
	4 

	-10 
	-10 
	6 
	3 

	-8 
	-8 
	6 
	3 

	Table 13 shows the number of fatal locations predicted on the new dataset. It can be seen from the table that the recommendations made in this report also has the potential to improve the number of fatal/casualty locations in the newly filtered dataset. 
	Table 13 shows the number of fatal locations predicted on the new dataset. It can be seen from the table that the recommendations made in this report also has the potential to improve the number of fatal/casualty locations in the newly filtered dataset. 


	The number of fatal locations identified using the corrected DOT fatal prediction values showed improvement in Illinois and in Texas using correction sets 1 and 2. The fatal correction set 3 did not show any improvement in any state except Illinois. Correction set 1 and 2 are selected for fatal corrections. 
	Tables 14 – 18 shows the results of applying the identified casualty corrections in each of the 5 states in the validation dataset. 
	Table 14: Validation Results using Casualty Correction on Illinois 
	Table 14: Validation Results using Casualty Correction on Illinois 
	Table 14: Validation Results using Casualty Correction on Illinois 

	Xc 
	Xc 
	Yc 
	Number of Casualty Locations Identified (Base = 94) 
	Number of PDO Locations Identified (Base = 103) 

	30 
	30 
	30 
	96 
	103 

	30 
	30 
	32 
	96 
	103 

	30 
	30 
	34 
	96 
	103 

	30 
	30 
	36 
	96 
	103 

	30 
	30 
	38 
	97 
	104 

	32 
	32 
	30 
	96 
	103 

	32 
	32 
	32 
	96 
	103 

	32 
	32 
	34 
	96 
	103 

	32 
	32 
	36 
	96 
	103 

	32 
	32 
	38 
	97 
	103 

	34 
	34 
	30 
	96 
	102 

	34 
	34 
	32 
	96 
	103 

	34 
	34 
	34 
	96 
	103 

	34 
	34 
	36 
	96 
	102 

	34 
	34 
	38 
	96 
	103 

	Table 15: Validation Results using Casualty Correction on Pennsylvania 
	Table 15: Validation Results using Casualty Correction on Pennsylvania 


	Xc 
	Xc 
	Xc 
	Yc 
	Number of Casualty Locations Identified (Base = 27) 
	Number of PDO Locations Identified (Base = 58) 

	30 
	30 
	30 
	25 
	57 

	30 
	30 
	32 
	25 
	57 

	30 
	30 
	34 
	24 
	57 

	30 
	30 
	36 
	24 
	57 

	30 
	30 
	38 
	24 
	57 

	32 
	32 
	30 
	25 
	57 

	32 
	32 
	32 
	25 
	57 

	32 
	32 
	34 
	25 
	57 

	32 
	32 
	36 
	25 
	57 

	32 
	32 
	38 
	25 
	57 

	34 
	34 
	30 
	25 
	57 

	34 
	34 
	32 
	25 
	57 

	34 
	34 
	34 
	25 
	57 

	34 
	34 
	36 
	25 
	57 

	34 
	34 
	38 
	25 
	57 


	Table16: Validation Results using Casualty Correction on South Carolina 
	Xc 
	Xc 
	Xc 
	Yc 
	Number of Casualty Locations Identified (Base = 29) 
	Number of PDO Locations Identified (Base = 69) 

	30 
	30 
	30 
	27 
	66 

	30 
	30 
	32 
	27 
	66 

	30 
	30 
	34 
	27 
	66 

	30 
	30 
	36 
	27 
	66 

	30 
	30 
	38 
	27 
	66 

	32 
	32 
	30 
	27 
	66 

	32 
	32 
	32 
	27 
	66 

	32 
	32 
	34 
	27 
	66 

	32 
	32 
	36 
	27 
	66 

	32 
	32 
	38 
	27 
	66 


	34 
	34 
	34 
	30 
	27 
	66 

	34 
	34 
	32 
	27 
	66 

	34 
	34 
	34 
	27 
	66 

	34 
	34 
	36 
	27 
	66 

	34 
	34 
	38 
	27 
	66 

	Table 17: Validation Results using Casualty Correction on Texas 
	Table 17: Validation Results using Casualty Correction on Texas 


	Xc 
	Xc 
	Xc 
	Yc 
	Number of Casualty Locations Identified (Base = 85) 
	Number of PDO Locations Identified (Base = 179) 

	30 
	30 
	30 
	85 
	172 

	30 
	30 
	32 
	85 
	174 

	30 
	30 
	34 
	84 
	175 

	30 
	30 
	36 
	85 
	175 

	30 
	30 
	38 
	85 
	175 

	32 
	32 
	30 
	84 
	174 

	32 
	32 
	32 
	85 
	175 

	32 
	32 
	34 
	85 
	176 

	32 
	32 
	36 
	83 
	175 

	32 
	32 
	38 
	83 
	176 

	34 
	34 
	30 
	85 
	175 

	34 
	34 
	32 
	86 
	175 

	34 
	34 
	34 
	86 
	175 

	34 
	34 
	36 
	86 
	175 

	34 
	34 
	38 
	84 
	175 


	Table 18: Validation Results using Casualty Correction on Iowa 
	Table 18: Validation Results using Casualty Correction on Iowa 
	Table 18: Validation Results using Casualty Correction on Iowa 

	Xc 
	Xc 
	Yc 
	Number of Casualty Locations Identified (Base = 28) 
	Number of PDO Locations Identified (Base = 57) 

	30 
	30 
	30 
	27 
	57 

	30 
	30 
	32 
	27 
	58 

	30 
	30 
	34 
	27 
	58 

	30 
	30 
	36 
	27 
	58 

	30 
	30 
	38 
	27 
	58 

	32 
	32 
	30 
	26 
	57 

	32 
	32 
	32 
	26 
	57 

	32 
	32 
	34 
	27 
	57 

	32 
	32 
	36 
	27 
	58 

	32 
	32 
	38 
	27 
	58 

	34 
	34 
	30 
	26 
	56 

	34 
	34 
	32 
	26 
	57 

	34 
	34 
	34 
	26 
	57 

	34 
	34 
	36 
	26 
	57 

	34 
	34 
	38 
	26 
	57 


	From Tables 14 – 18 we can see that the application of casualty corrections enabled us to identify more number of casualty locations in the states of Illinois and Texas. The values of Xc ,Yc pairs identified for Illinois are 30,38 and 32,38. The respective values identified for Texas are 34,32 , 34,34 , 34,36. On further inspection, the number of PDO locations identified in the Illinois dataset used in validation (Table 14), is better for the pair 30,38. 
	From these results, it is safe to say that the corrections using Maximum Timetable Train Speed and the Crossing Surface at a grade crossing location has the potential to improve the number of locations identified in the dataset.  A DOT engineer would have to identify adjustments required to make the corrections on the dataset that he/she is working on.  
	Recommended Correction Values 
	f,Yf and Xc, Yc. For the fatal correction, the authors recommend values -12,6 or -10,6.  For casualty corrections, the authors recommend using values 30,38 or 34,34. These values are chosen from the validation dataset in Illinois and Texas.  
	Tables 19 shows the recommended values of X

	Table19: Recommended Correction Values 
	Table
	TR
	Xf
	 Yf 

	1 
	1 
	-12 
	6 

	2 
	2 
	-10 
	6 

	TR
	Xc
	 Yc 

	1 
	1 
	30 
	38 

	2 
	2 
	34 
	34 


	An analyst can apply this methodology to identify a correction factor for his/her state or choose a correction set that would improve the number of fatalities and/or causalities predicted in the state and use the adjusted severity prediction value to evaluate risk at crossings. 
	Applying Corrections 
	A step by step procedure to apply the corrections identified is discussed in this section.  
	1. 
	1. 
	1. 
	F 
	Find the number of locations within the dataset with fatal accidents. This is called N


	2. 
	2. 
	Find number of locations that within the dataset that had an accident. This is called M 

	3. 
	3. 
	3. 
	Sort the M crossings with accidents in descending order using  

	a. 
	a. 
	a. 
	P(FA|A) calculated using equation (3).  
	0


	b. 
	b. 
	P(FA|A) calculated based on fatal correction set 1.  
	1


	c. 
	c. 
	P(FA|A) calculated based on fatal correction set 2.  
	2




	4. 
	4. 
	F locations. F0, NF1, and NF2 
	In crossings sorted in step 3, find the number of fatal accident locations in the top N
	These are called N


	5. 
	5. 
	F0, NF1, and NF2. The probability corresponding to the highest number is called P’(FA|A). This value is used to calculate the risk at a crossing in Equation 7. 
	Choose the correction set that corresponds to the highest number among N


	6. 
	6. 
	C 
	Find the number of locations within the dataset with casualty accidents. This is called N


	7. 
	7. 
	7. 
	Sort the M crossings with accidents in descending order using  

	a. 
	a. 
	a. 
	P(CA|A) calculated using equation (3).  
	0


	b. 
	b. 
	P(CA|A) calculated based on casualty correction set 1. 
	1


	c. 
	c. 
	P(CA|A) calculated based on casualty correction set 2. 
	2




	8. 
	8. 
	C locations. C0, NC1, and NC2 
	In crossings sorted in step 7, find the number of fatal accident locations in the top N
	These are called N


	9. 
	9. 
	C0, NC1, and NC2. The probability corresponding to the highest number is called P’(CA|A). This value is used to calculate the risk at a crossing in Equation (7). 
	Choose the correction set that corresponds to the highest number among N


	10. 
	10. 
	Calculate P’(PDO|A) as 1-P’(CA|A). This is also used in Equation (7). 


	The Figure 1 below shows the step by step procedure that a DOT engineer can follow to decide if he/she chooses to apply a correction or not.  
	Find the number of locations within the dataset with fatal accidents. This is called NF Find number of locations that within the dataset that had an accident. This is called M Sort the M crossings with accidents in descending order using the calculated fatal probabilities In crossings sorted find the number of fatal accident locations in the top NF locations. These are called NF0, NF1, and NF2 The probability correspondi ng to the highest number is called P’(FA|A). This value is used in equation (7) Find th
	In crossings sorted find the number of fatal accident locations in the top NC locations. These are called NC0, NC1, and NC2 
	Figure
	The probability correspondi ng to the highest number is called P’(CA|A). This value is used in Equation (7) 
	Figure
	Calculate P'(PDO|A). This value is used in Equation (7) 
	Figure 1: Stepwise procedure to select correction factor for fatal prediction 
	The engineer can look at the number multiple accident locations identified in the top locations in the case of a tie. A similar step can be adopted independently to decide which of the two correction sets to use (or to not apply corrections) for casualty corrections and PDO corrections. 
	To evaluate the risk at a crossing, a user should select a severity scale (given in Table 1). This selection could depend on the user’s preferences and/or local conditions in the region of the crossings being considered. The risk at a crossing should be computed as 
	𝑅𝑖𝑠𝑘 𝑎𝑡 𝑎 𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔  𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝑜𝑓 𝐹𝑎𝑡𝑎𝑙 𝐴𝑐𝑐𝑖𝑑𝑒𝑛𝑡 ∗ 𝑃𝐹𝐴|𝐴 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝑜𝑓 𝐼𝑛𝑗𝑢𝑟𝑦 𝐴𝑐𝑐𝑖𝑑𝑒𝑛𝑡 ∗ 𝑃𝐶𝐴|𝐴 𝑃𝐹𝐴|𝐴  𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝑜𝑓 𝑃𝐷𝑂 𝐴𝑐𝑐𝑖𝑑𝑒𝑛𝑡 ∗ 𝑃′𝑃𝐷𝑂|𝐴 (7) 
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	Conclusions and Recommendations 
	Conclusions and Recommendations 
	This report discusses a methodology to define and quantify risk at a railroad grade crossing. The predicted number of accidents alone at a crossing is insufficient to determine the risk at a crossing 
	and hence the severity of accidents at the crossing is also considered in this study. The DOT severity equations are used as a starting point in this study and the variables crossing surface and maximum timetable train speed at a crossing are used to refine the severity prediction values. 
	This study used the most recent data from the state of Illinois to identify corrections for prediction of fatal and casualty accidents at a location. An exhaustive search approach come up with the corrective values to improve the prediction power of the equations. The identified corrections were tried out in other states spread across continental United States to validate the results. 
	The comparisons between the adjusted severity prediction values and the unadjusted severity prediction values show that the adjustments have the potential to improve the prediction power of the DOT severity equations. The adjusted DOT severity prediction equations could identify more fatal/casualty accidents among the top crossings than the unadjusted DOT severity prediction equations in certain states evaluated. Based on the analysis conducted, recommendations for correction values are also made. 
	This study also developed a stepwise procedure to evaluate a group of crossings. The procedure is designed to help an engineer to decide which of the recommended correction values to use.  
	Recommendations and Future Work 
	Based on the above discussion, we can see that the corrections to the FRA severity prediction equations has the potential to improve its severity prediction capacity. This improved severity prediction formulas should be used to evaluate the risk at a crossing using the expression considering the relative weights of accident severity discussed in the earlier section “Risk at a Crossing”. An engineer can follow the methodology discussed in this report to evaluate the risk at the crossing. 
	Using a bigger dataset with data from more states could aid in fitting a better prediction model. Furthermore, more datasets could be added giving further information about the crossing that could affect the model, i.e. census data etc.  
	The study identified sets of adjustments for DOT casualty prediction formula. The adjusted severity prediction equations could be incorporated into an excel calculator. 
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